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M U L T I P L I C A T I V E  C O M M U T A T O R S  IN D I V I S I O N  
RINGS 

BY 

I. N. HERSTEIN* 

ABSTRACT 

In this paper we study division rings in which the multiplicative commutators  

are periodic or periodic relative to the center. 

As a consequence of one of their principal theorems in [4], Herstein, Procesi 

and Schacher proved that if D is a division ring with center Z such that 

(xy-yx)"r n ( x , y ) =  > 1, for all x,y E D  then dimzD_-<4 (and so, in 

particular, (xy - yx) 2 E Z for all x, y ~ D).  

It seems rather natural to consider the multiplicative analog of the above-cited 

result, namely, to consider a division ring D in which (xyx-~y-~)"r 
n(x, y) => 1, for all x ~ 0 and y ~ 0 in D. A very partial, fragmentary result in this 

direction was obtained by Putcha and Yaqub in [6]; they considered the situation 

where n(x, y) = 2 mtx'y). Related to these kinds of things is a result by Zalesskii [9] 

on torsion normal subgroups of division rings. He showed that a periodic normal 

subgroup of a division ring must be central. We shall extend this, as a 

consequence of what we do here, to periodic subnormal subgroups of division 

rings. 

The natural conjecture would be that a division ring D in which 

(xyx-~y-~)"r E Z for all non-zero x and y in D must be a field. We don't  quite 

obtain this full result; but the results we do get imply those already known. We 

also show the result to be correct if (xyx-~y-~)'t~'Y~= 1. 

We shall use the following notation throughout. Z will denote the center of 
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the division ring D, and if D~ is a subdivision ring of D then Z(D1) will deno te  

the center  of D~. If x E D then Co(x)  = {y ~ D Ixy = yx}, If a E D then Z ( a )  

will be the subfield of D obta ined by adjoining a to Z. 

We begin the material  of this paper  with 

THEOREM 1. Let D be a division ring in which, for all x ~ 0 and y ~ 0 in D, 

(xyx ~y-1).tx,y) = 1 for some n ( x , y ) ~  1. Then D is commutative. 

PROOF. If all xyx-~y -1 are in Z then, for y E D ,  x Z ( y ) x - I C  Z ( y )  for all 

x ~ 0 E  D. By the B r a u e r - C a r t a n - H u a  theorem we have, since Z ( y )  is com- 

mutative,  that Z ( y )  = Z and so y ~ Z. Thus  D would be commuta t ive .  

Suppose then that a = xyx-~y ~ g 1 for some x, y E D. By hypothesis,  a"  = 1 

for some n > 1 ,  hence  Z ( a )  is a normal  extension of Z. Let ~b~ 1 be an 

au tomorph ism of Z ( a )  over  Z. By the S k o l e m - N o e t h e r  theorem,  ~b(a )=  

bab-'  = a ' J  a for  some b E D. Because Z ( a )  is a finite extension of  Z, O k = 1 

for some k > 1 hence  bka = ab k. 

Let D~ = Ct~(bk); since a,b ~ D~ and a"  = 1, b k ~ Z ~  = Z(D~) and ba = a'b, 

a and b genera te  a subdivision algebra D2 of DI which is f inite-dimensional over  

Z~. Let b k = h ~ Z , ;  thus c = b(a + h)b-~(a  + A) -~ = ( a '  + h ) / ( a  + h ) J  1 is a 

commuta to r  in D2, whence  cm = 1  for some m > 1 .  Since a c = c a  and h = 

(a ~ + ac)/(c - 1) and a, c are roots  of unity, we obtain that A is obta ined  f rom 

the prime field P by adjunct ion of roots  of unity. Hence  h is algebraic over  P. 

If C h a r d  = p J  0, this last s ta tement  implies that P (A)  is a finite field, hence  

1 = h '  = b k' for some t > 1, that is, b is of  finite period. Since a is also of finite 

period and ba = a~b we have that a and b genera te  a finite division ring E over  

P. By Wedde rbu rn ' s  theorem,  E is a field. However ,  a and b are both in E, in 

consequence  of which ab = ba. This contradicts  that  ba = a'b ~ ab. 

So we may assume that c h a r D  = 0; hence  h is algebraic over  the rational field 

P, and so b is algebraic over P. F rom this fact and the relations a " = 1 and 

ba = a'b we obtain that a and b genera te  a division algebra D3 over  P which is 

finite-dimensional over  P. But then, f rom the propert ies  of the roots  of unity in a 

finite extension of the rationals, we have that roots  of unity in D3 a r e  of bounded  

order.  Therefore  there exists an integer N > 0 such that (uvu ' v - ' )  N = 1 for  all 

u # 0, v ~  0 in D3. By a result of  Ami tsur  [1, theor.  19], D3 is commuta t ive .  Since 

a, b ~ D3 we have that ab = ba in contradict ion to a b ~  ba. In this way we have 

shown that D is a field, and so T h e o r e m  1 is proved.  

If D is a division ring finite-dimensional over  its center  Z and if y E D is a 

product  of commuta to r s  u,v,u~'v?', then if y "  = A ~ Z we must have that A is a 

root  of unity, For  if N is the norm on D to Z, since N(uvu-~v  1)= 1, we have 
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N ( y ) = l  and  N ( A ) = A '  where  t = d i m z D ;  thus  s ince y " = A ,  l = N ( y " ) =  

N(A)--A'. Since we shall  use this r e m a r k  severa l  t imes  we r eco rd  this as a 

SUBLEMMA. I f  D is a division ring f in i te-dimensional  over Z and i f  y ~ D is a 

product o[ multiplicative commutators  then, i[ y"  = A ~ Z,  we must  have that A is 

a root o f  unity. 

T h e  S u b l e m m a  t o g e t h e r  with T h e o r e m  1 i m m e d i a t e l y  imply 

THEOREM 2. Let  D be a division ring f in i te-dimensional  over its center Z,  such 

that (xyx-~y-~)"~'Y~EZ,  n ( x , y ) =  > 1, ]:or all non-zero x a n d  y in D. Then D is 

corn m utative. 

W e  shall  now ex t end  T h e o r e m  2, d r o p p i n g  the a s sumpt ion  of the  finite- 

d imens iona l i t y  of D over  Z.  W e  are  not  ab le  to get  the  full gene ra l  t h e o r e m  we 

seek  - -  for  we still need  to impose  a cond i t ion  on D - -  but  the  resul t  we ob ta in  is 

s t rong enough  to de r ive  readi ly  the  known resul ts  in this d i rec t ion .  

THEOREM 3. Let  D be a division ring in which for all non-zero  x, y in D, 

(xyx  -~y-t)"t~'Y) ~ Z for some n(x ,  y )  -> 1. I f  a E D, a ~ Z is algebraic over Z then 

Z ( a )  admits  no non-trivial  automorphism over Z. 

PROOF. Suppose  that  ,;bg 1 is an a u t o m o r p h i s m  of Z ( a )  over  Z .  Since a is 

a lgebra ic  over  Z we must  have  that  ~b ~ = 1 for  some  k > 1. 

By the S k o l e m - N o e t h e r  t h e o r e m  the re  exists an x E D such that  ~ b ( a ) =  

x a x - ' ;  t he re fo re  xka  = a x L  Now, bo th  a and  x are  in C o ( x  k) and  both  are  

a lgebra ic  over  Z ,  = Z ( C o ( x k ) ) .  Because  x a x - ' =  q ( a ) ~  a where  q ( a ) E  Z ( a ) ,  

we have  that  x and a g e n e r a t e  a f in i t e -d imens iona l  division a lgebra  D ,  ove r  Z , .  

By T h e o r e m  2 we must  have  that  D~ is commuta t ive .  H o w e v e r ,  since bo th  x and 

a are  in D ,  and  do  not  c o m m u t e ,  we have  a con t rad ic t ion .  The  t h e o r e m  is now 

proved .  

A s  a very special  case of T h e o r e m  3 we have  

THEOREM 4. I f  D is a 

for all x ~ 0 ,  y ~ O in D, 

division ring in which (xyx-~y-~)"~x'Y) C Z,  n(x ,  y )  >= 1, 

i f  a 2 E Z then a ~ Z. 

PROOF. Suppose  that  a ~ Z ;  then for  ~ome x E D, u = x a x - ' a - '  ~ 1. Since 

a 2 E Z ,  ( u a ) 2 = x a 2 x  - '  = a 2 f rom which we get  uau = a, and  so aua -~= u -~. 

Since u is a c o m m u t a t o r ,  u"  E Z for  some  n > 0, so u is cer ta in ly  a lgebra ic  over  

Z.  If u - '  = u then u z = 1, and  s ince u ~  1 we have  that  u = - 1. This  would  give 

us that  xax  -~ = a ~ a and  so Z ( a )  admi t s  the  non- t r iv ia l  a u t o m o r p h i s m ,  induced-  

by con juga t ion  by  x, ove r  Z. By T h e o r e m  3 this is not  possible .  H e n c e  u -~ ~ u. 
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Since u - '  = aua- ' ,  Z ( u )  admits  the non-trivial au tomorph i sm over  Z induced by 

conjugat ion by a. By T h e o r e m  3, this is impossible. 

An  immedia te  corollary to this last t heorem is the 

COROLLARY ]. If D is a division ring in which (xyx - ' y - ' ) "~"Y~EZ for all 

x ~ 0 ,  y ~ 0  in D then (xyx-ly-~)m~x'Y~EZ where m ( x , y )  is odd. 

From this corollary we read off trivially the special result by Putcha  and Yaqub  

cited earlier [6]. 

COROLLARY 2. I f  D is a division ring in which (xyx-'y-~)2"'"'~E Z for all 

x ~ 0, y fi 0 in D, then D is commutative. 

We can drop the algebraic condit ion on a in T h e o r e m  3, by restating the result 

in a somewhat  different form. 

THEOREM 5. Let D be a division ring in which (xyx-~y-1)"~'Y~ E Z for all 

non- zero x and y in D, with n (x, y ) >-_ 1. I`f a, b E D are such that bab-t E Co (a) 

then ab = ba. 

PROOF. Suppose that a b ~ b a .  If u = b a b - ~ a  -~ then, if u = A ~ I E Z ,  we 

would have that b a b - ' ~ Z ( a ) ,  and so b Z ( a ) b  - ~ C Z ( a ) .  If v = 

b(a + 1)b-~(a + 1) -~ = (Aa + 1)/(a + 1), since v is a commuta to r ,  v "  ~ Z for 

some m => 1. Hence  [(Aa + 1)/(a + 1)]" = /3  E Z. If /3 g A", this last relation 

would force a to be algebraic over  Z. This, toge ther  with b Z ( a ) b - ~ C  Z ( a )  

would yield, by applying T h e o r e m  3, that ba = ab. Hence  we must assume that 

/3 = A", and so [(Aa + 1)/(a + 1)]" = A". In o ther  words [(Aa + 1)/A (a + 1)]"1 = 

1. Let c = (Aa + 1)/A (a + 1); since A g 1 and a E Z we immediately  know that 

c E Z. But c "  = 1, c ~ Z, hence  Z ( c )  admits a non-trivial au tomorph i sm over  Z. 

By T h e o r e m  3 this is not possible. So we conclude that u = bab- ' a - '  is not in Z. 

Since u is a commuta to r ,  u" = y ~ Z for some n > 1. Because bab -~ E Co (a) 

by hypothesis,  3' = u" = (bab-ta-~)" = (bab- ')"a-" = ba"b ~a-". By the reason- 

ing of the paragraph above  we must have 3' = 1 and so u" = y = 1. Since u ~ Z 

is a root  of unity, Z ( u )  admits  a non-trivial au tomorph i sm over  Z. By T h e o r e m  3 

this is not  possible. In consequence ,  ab = ba and so the theorem is proved.  

We now pass to a local version of  T h e o r e m  4. This is 

THEOREM 6. Let D be a division ring, and let a E D be such that 

(axa-'x -')""~ E Z, n (x) _-> 1, for all x / 0 in D. I[ a 2 E Z then a E Z. 

PROOF. Suppose that a ~ Z. F rom the B r a u e r - C a r t a n - H u a  theorem we 

immediately  have that u = axa-~x -~ ~ Z for some x E D. As in the proof  of 

T h e o r e m  4 we obtain that ua-~u = a -~, and so aua -~ = u -~ ~ u. 
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Consider  Z ( u ) ;  a induces an au tomorph i sm of period 2 on Z ( u )  by 

conjugat ion .  Hence  the fixed field F of  this au tomorph i sm is of  co-dimension 2 

in Z (u ) .  Therefore  Z ( u )  = {a + flu l a,/3 E F}. 

If a,/3 E F they c om m ut e  with a, whence y = a(a  + flu)a-~(a +/3u)- '  = 

(a + flu -~)/(a + flu) = y ( a  + flu) -2, where 7 = (a +/3u-~)(a + flu) is in Z. Since 

y is a c o m m u t a t o r  of a, y"  E Z E F for some n => 1, 

a , / 3 E F .  If t E Z ( u ) ,  t = a + f l u  for some a,/3 

some m (t) => 1. By a result of Kaplansky [5], F is 

f rom 0, and ei ther  Z ( u )  is purely inseparable over  

the pr ime field having p elements.  

hence (a  + flu)2" E F for all 

F, thus t m t ' ) E F ~ Z ( u )  for 

of characterist ic p different 

F of Z ( u )  is algebraic over  

Now u ~ -  Au + 1 = 0 where A = u + u - ~  F. So, if c h a r F / 2 ,  u is separable  

over  F. If char  F = 2, then u is inseparable over  F only if A = 0, and so, only if 

u 2= 1. But this would force u = 1, contrary to u / 1 .  Hence  Z (u ) ,  and so Z, 

must be algebraic over  the prime field. Since a 2 E  Z, a 2 is algebraic over  GF(p)  

and so a m --- 1 for some m => 1. Because u E Z (u ) ,  u is algebraic over  GF(p) ,  

hence u" = 1 for some n _-> 1. These two relations on u and a together  with 

aua -~= u- '  give us that a and u genera te  a finite division ring. By Wedder -  

burn ' s  t heorem we conclude that au = ua, contrary  to au ~ ua. The theorem is 

thereby proved.  

At  this point it seems appropr ia te  to make  two conjectures  which touch on the 

things we have been discussing. The first is a local version of T h e o r e m  1; the 

second is a local version of  the general  result we seek here. Of  course the truth of 

the second conjecture  would imply that of the first one. 

CONJECTURE 1. Let D be a division ring, a ~ D such that (axa-~x-J)"~x)= 1 

for all x ~ 0 C D. Then a E Z. 

CONJECTURE 2. Let D be a division ring, a E D such that (axa-lx-~)"tx) E Z 

for all x ~ O ~ D. Then a ~ Z. 

We cont inue  studying division rings in which (xyx-ly- ' )" tx 'Y)~ Z. We prove 

LEMMA 1. Let D be a division ring in which (xyx-'y-~)"tx' y) E Z for all x ~ O, 

y ~ 0 in D. Then D contains no elements purely inseparable over Z. 

PROOF. Suppose  that c h a r d  = p . ~ 0  and a E Z  but a P E Z .  We follow a 

familiar route.  Let  [u ,v ]  = u v -  vu and [u,, u 2 , - " ,  u , ]  = [ [ u ~ , - - - , u , _ , ] , u , ] .  

Thus  for any x @ D, 

[ x , a , a , . . - , a ] = 0 .  

p-times 
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So there exists a y ~ D with ay - ya # 0 E Co (a). As usual this gives an element 

b G D such that ab - ba = a,_and so aba -1 = 1 + b. Thus aba- 'b - '  = 1 + b -1, and 

since (aba-lb-~) k E Z we have (1 + b-~) k E Z. Therefore  b is algebraic over  Z. 

So, since aba -~= 1 + b, Z ( b )  admits a non-trivial au tomorphism over  Z. By 

Theorem 3, this situation is not possible, whereby the Iemma is proved. 

With the lemma in hand we can prove 

THEOREM 7. Let D be a division ring in which (xyx-~y-')"(~'Y~@Z for all 

x # O, y # 0 in D. Then any element in D which is algebraic over Z is separable 

over Z. 

PROOF. Suppose that a ~ D, a ~ Z is inseparable over Z. Therefore  a p" is 

separable over  Z for some n, where p = c h a r D # 0 .  By Lemma  1, a P " ~ Z .  

Consider Co (a p~). In it, a is purely inseparable over  Z (CD (a p~)), so, by Lemma 

1, we have that Co(a p~ is commutat ive,  unless a ~'Z(CD(aP")).  But if 

a ~ Z(Co(aP"))  = Z ( a  p") (by the double centralizer theorem) then a is separa- 

ble over Z since Z(a"" )  is a separable extension of Z. On the other hand, if 

Co(a p") is commutative,  it is a maximal subfield of D and, by the double 

centralizer theorem, Co(aP~ = Z(aP~ Since a E Co(a p") = Z(aPn), as above 

we conclude that a is separable over  Z. At any rate, in all cases a turns out to be 

separable over Z, which is precisely the contention of the theorem. 

We turn to a question which is a bit off the direction we have followed until 

now, but is closely related in spirit to the results we have established. The next 

theorem extends a result of Zalesskii [9], who proved it for periodic normal 

subgroups of D. 

THEOREM 8. Let D be a division ring and let N be a subnormal subgroup of the 

multiplicative group of D. I f  N is periodic then N C Z. 

PROOF. It is enough to show that N is commutat ive,  for if K is the 

subdivision ring of D generated by N over Z then aKa -~ C K for all a E N. If 

N,~ Z, then by a result of Stuth [8] either K C Z or K = D. If N is commutat ive,  

then K is a field so we obtain, f rom the above, that K C Z. Since N C K we 

derive that N C Z. So, to prove the theorem, we must merely show that N is 

commutative.  

We first dispose of the case d i m z D  < ~. In that case N is isomorphic to a 

torsion group of matrices, so by the affirmative answer to the Burnside Problem 

in this case N must be locally finite. If Char D = p  # 0 it then follows from a 

result of Herstein [2] that N is abelian, so by the argument  of the first paragraph, 

N C Z. Hence  we may assume that Char D = 0. 
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Suppose that N is not commutat ive,  and that a, b E N are such that ab ~ ba. 

Consider No, the group generated by a and b. By the local finiteness of N, No is a 

finite group. So D~ = QNo, the span of No over the rational field Q, is a division 

algebra finite-dimensional over  Q. Also, M = Dt fq N D No is a subnormal 

subgroup of D,, and is clearly a torsion group. If M is abelian, because 

a, b E N0 C M we have the contradiction ab = ba. 

So we may assume that D is finite-dimensional over  Q, and that N is a 

non-commutat ive,  periodic subnormal subgroup of D. As a torsion group of 

matrices over  Q, by a theorem of Schur [7], N has an abelian normal subgroup A 

of finite index in N. The subdivision ring generated by A is a field K such that 

n K n - l C  K for all n E N. Since N C . Z ,  by the previously-quoted result of Stuth, 

we have that A C Z. 

Now Z is a finite extension of Q, so has only a finite number  of roots of unity. 

Yet every a E A is such a root of unity. The net result of this is that A is a finite 

group. Since A is of finite index in N, we conclude that N is a finite group. 

If N is normal in D, then every element of N has all its conjugates in N, 

therefore has only a finite number  of conjugates. By a theorem of Herstein [3] 

we get that N C Z. So we may assume that N is not normal in D. 

Since N is subnormal in D, N < 1 N ~ < ~ N 2 < ~ . . . N k < I D .  If t ~ N ~  then t 

induces an automorphism on the finite group N by conjugation. Thus we have 

that t ' E  CD(N), where r - - - (o(N)) ! .  However ,  since N,~ Z and x C o ( N ) x - ' C  

Co (N)  for all x E N, by Stuth's theorem we have that Co (N)  = Z or Co (N)  = 

D. The latter possibility implies that N C Z. Therefore  C o ( N ) C  Z. Since 

t" ~ Co (N),  we have that t '  E Z. 

Let B be the commuta tor  subgroup of N~. If b E B, by the above, b '  =/3  ~ Z. 

By the Sublemma we therefore have that /3  is a root of unity. Thus b "  = 1 for 

b ~ B. Since B .~ N2 '~ �9 �9 �9 Nk <~ D, using an induction on the length of subnor- 

mality (we already have the result, above, for normal subgroups) we get that 

B C Z. So, if a , b  ~ N C N,, then aba-lb-~ = at E Z and so a b a - l E  Z ( b )  for 

every a ~ N. Thus a Z ( b ) a - '  C Z ( b )  for every a E N;  since NjE Z, by the 

theorem of Stuth we conclude that Z ( b )  = Z and so b E Z. Thus N C Z, and the 

result is proved if d i m z D  < o0. 

Suppose, then, that d i m z D  = oo, and that N is a subnormal periodic subgroup 

of D. Suppose that N Z  Z, and let a E N, a g Z. Since a k = 1 for some k > 1, the 

field Z ( a )  admits an automorphism ~ #  1 over  Z, and t k ( a ) =  a ' / a .  By the 

Sko lem-Noe the r  theorem there is an x E D such that xax - '  = ~b(a) = a ~. Since 

Z ( a )  is finite-dimensional over  Z, ,;b' = 1 and so x 'a  = ax '  for some t _-> 1. Let 

Do be the subdivision ring generated by x and a over  Z. From the fact that x '  
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commutes  with both x and a we have that x '  E Zo = Z(Do).  Because a k = 1 and 

xax -~= a', we then have that Do is finite-dimensional over  Z0. Since No = 

N fq Do is a periodic subnormal sugroup of Do, which is finite-dimensional over  

its center Z0, the result we have established above in the finite-dimensional case 

tells us that No C Zo. However ,  a ~ No and a ~. Zo since x E Do and ax ~ xa. 

With this contradiction the theorem is proved. 

It seems reasonable that the generalization of Theorem 8 from torsion groups 

to groups which are torsion with respect to Z might be true. This is 

CONJECTURE 3. Let D be a division ring and let N be a subnormal subgroup of 

D. I f  a"~a)EZ for every a E N ,  where n ( a ) > 0 ,  then N C Z .  

We finish this paper  with a result which gives some information in the 

direction of verifying Conjecture 3. 

THEOREM 9. Let D be a division ring and N a subnormal subgroup of D such 

that a"~")E Z for all a E N, where n ( a ) > 0 .  Then every element in N of finite 

period must be in Z. 

PROOF. Suppose that a E N ,  a ~ Z  is such that a "  = 1  for m > 0 .  By the 

Sko lem-Noe the r  theorem there exists an x E D such that xax -t = a ' g  a. Thus 

x'a = ax'  for some t > 0. Therefore  the subdivision ring D, generated by a and 

x over Z is finite-dimensional over  Z~ = Z(Dt ) .  If N~ = N N D~, then Nt is 

subnormal in D~ and b "~b) E Z~ for all b E N~. 

Let B be the commuta to r  subgroup of N,. If b E B then b"~b~ =/3 E Z, ;  by the 

Sublemma,/3  is a root of unity. Hence  b"t") = 1 for m (b) > 0. So B is a periodic 

subnormal subgroup of Dz. By Theorem 8, B C ZI. So, if u,v  E N~ then 

u v u - ' v  -~ E B C Z, ,  hence uvu -~ = Av where A E Z,.  Thus u E Z ( v ) u - '  C Z ( v )  

for all u E N~. Since a E N, and a ~ Z, ,  N, ~ Zz. Therefore,  by Stuth's  theorem,  

Z ( v )  -- Z for all v E NI, and so Nt C Z~. This contradicts N, E Z~, and proves 

the theorem. 

If D is a division ring of characteristic p ~ 0 and N is a subnormal subgroup of 

D such that x"Cx~EZ for every x E N, using the argument  of L e m m a  1 in 

conjunction with Theorem 8 it is easy to show that every element a E N such 

that a""C~ E Z must be in Z. In particular if N is such that x p"''~ E Z for all x E N 

then N is in the center. 

A d d e d  in Proof. It has come to my attention that Monastyrni (Math. Rev. 51, 

5782) has proved a slight generalization of my Theorem 8, and deserves priority 

on this result of Theorem 8. 
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