MULTIPLICATIVE COMMUTATORS IN DIVISION **RINGS**

BY

I. N. HERSTEIN*

ABSTRACT

In this paper we study division rings in which the multiplicative commutators are periodic or periodic relative to the center.

As a consequence of one of their principal theorems in [4], Herstein, Procesi and Schacher proved that if D is a division ring with center Z such that $(xy - yx)^{n(x,y)} \in Z$, $n(x, y) \ge 1$, for all $x, y \in D$ then $\dim_z D \le 4$ (and so, in particular, $(xy - yx)^2 \in Z$ for all $x, y \in D$).

It seems rather natural to consider the multiplicative analog of the above-cited result, namely, to consider a division ring D in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$. $n(x, y) \ge 1$, for all $x \ne 0$ and $y \ne 0$ in D. A very partial, fragmentary result in this direction was obtained by Putcha and Yaqub in [6]; they considered the situation where $n(x, y) = 2^{m(x,y)}$. Related to these kinds of things is a result by Zalesskii [9] on torsion normal subgroups of division rings. He showed that a periodic normal subgroup of a division ring must be central. We shall extend this, as a consequence of what we do here, to periodic subnormal subgroups of division rings.

The natural conjecture would be that a division ring D in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$ for all non-zero x and y in D must be a field. We don't quite obtain this full result; but the results we do get imply those already known. We also show the result to be correct if $(xyx^{-1}y^{-1})^{n(x,y)} = 1$.

We shall use the following notation throughout. Z will denote the center of

^{*} This work was supported by NSF grant MCS-76-06683 at the University of Chicago. This paper was written while the author was a vistor at the Institute for Advanced Studies, The Hebrew University of Jerusalem.

Received December 30, 1977

the division ring D, and if D_1 is a subdivision ring of D then $Z(D_1)$ will denote the center of D_1 . If $x \in D$ then $C_D(x) = \{y \in D \mid xy = yx\}$, If $a \in D$ then $Z(a)$ will be the subfield of D obtained by adjoining a to Z .

We begin the material of this paper with

THEOREM 1. Let D be a division ring in which, for all $x \neq 0$ and $y \neq 0$ in D, $(xyx^{-1}y^{-1})^{n(x,y)} = 1$ *for some* $n(x, y) \ge 1$ *. Then D is commutative.*

PROOF. If all $xyx^{-1}y^{-1}$ are in Z then, for $y \in D$, $xZ(y)x^{-1} \subset Z(y)$ for all $x \neq 0 \in D$. By the Brauer-Cartan-Hua theorem we have, since $Z(y)$ is commutative, that $Z(y) = Z$ and so $y \in Z$. Thus D would be commutative.

Suppose then that $a = xyx^{-1}y^{-1} \neq 1$ for some $x, y \in D$. By hypothesis, $a^n = 1$ for some $n > 1$, hence $Z(a)$ is a normal extension of Z. Let $\phi \neq 1$ be an automorphism of $Z(a)$ over Z. By the Skolem-Noether theorem, $\phi(a)$ = *bab⁻¹* = $a^{i} \neq a$ for some $b \in D$. Because $Z(a)$ is a finite extension of $Z, \phi^{k} = 1$ for some $k > 1$ hence $b^k a = ab^k$.

Let $D_1 = C_D(b^k)$; since $a, b \in D_1$ and $a^n = 1$, $b^k \in Z_1 = Z(D_1)$ and $ba = a^i b$, a and b generate a subdivision algebra D_2 of D_1 which is finite-dimensional over Z₁. Let $b^k = \lambda \in Z_1$; thus $c = b(a + \lambda)b^{-1}(a + \lambda)^{-1} = (a^i + \lambda)/(a + \lambda) \neq 1$ is a commutator in D_2 , whence $c^m = 1$ for some $m > 1$. Since $ac = ca$ and $\lambda =$ $(a^{i} + ac)/(c - 1)$ and a, c are roots of unity, we obtain that λ is obtained from the prime field P by adjunction of roots of unity. Hence λ is algebraic over P.

If Char $D = p \neq 0$, this last statement implies that $P(\lambda)$ is a finite field, hence $1 = \lambda^t = b^{kt}$ for some $t \ge 1$, that is, b is of finite period. Since a is also of finite period and $ba = a^{\dagger}b$ we have that a and b generate a finite division ring E over P. By Wedderburn's theorem, E is a field. However, a and b are both in E , in consequence of which $ab = ba$. This contradicts that $ba = a^i b \neq ab$.

So we may assume that char $D = 0$; hence λ is algebraic over the rational field P, and so b is algebraic over P. From this fact and the relations $a^m = 1$ and $ba = aⁱb$ we obtain that a and b generate a division algebra $D₃$ over P which is finite-dimensional over P. But then, from the properties of the roots of unity in a finite extension of the rationals, we have that roots of unity in D_3 are of bounded order. Therefore there exists an integer $N > 0$ such that $(uvu^{-1}v^{-1})^N = 1$ for all $u \neq 0$, $v \neq 0$ in D_3 . By a result of Amitsur [1, theor. 19], D_3 is commutative. Since $a, b \in D_3$ we have that $ab = ba$ in contradiction to $ab \neq ba$. In this way we have shown that D is a field, and so Theorem 1 is proved.

If D is a division ring finite-dimensional over its center Z and if $y \in D$ is a product of commutators $u_i v_i u_i^{-1} v_i^{-1}$, then if $y^m = \lambda \in \mathbb{Z}$ we must have that λ is a root of unity. For if N is the norm on D to Z, since $N(uvu^{-1}v^{-1})=1$, we have $N(y)=1$ and $N(\lambda)=\lambda^t$ where $t=dim_zD$; thus since $y''=\lambda$, $1=N(y'')=$ $N(\lambda) = \lambda'$. Since we shall use this remark several times we record this as a

SUBLEMMA. *If D is a division ring finite-dimensional over Z and if* $y \in D$ *is a product of multiplicative commutators then, if* $y'' = \lambda \in Z$ *, we must have that* λ *is a root of unity.*

The Sublemma together with Theorem 1 immediately imply

THEOREM 2. *Let D be a division ring finite-dimensional over its center Z, such that* $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$, $n(x, y) \ge 1$, for all non-zero x and y in D. Then D is *corn m utative.*

We shall now extend Theorem 2, dropping the assumption of the finitedimensionality of D over Z . We are not able to get the full general theorem we seek $-$ for we still need to impose a condition on D -- but the result we obtain is strong enough to derive readily the known results in this direction.

THEOREM 3. *Let D be a division ring in which for all non-zero x, y in D,* $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$ for some $n(x, y) \ge 1$. If $a \in D$, $a \notin Z$ is algebraic over Z then *Z(a) admits no non-trivial automorphism over Z.*

PROOF. Suppose that $\phi \neq 1$ is an automorphism of $Z(a)$ over Z. Since a is algebraic over Z we must have that $\phi^* = 1$ for some $k > 1$.

By the Skolem-Noether theorem there exists an $x \in D$ such that $\phi(a)$ = *xax*⁻¹; therefore $x^k a = ax^k$. Now, both a and x are in $C_p(x^k)$ and both are algebraic over $Z_1 = Z(C_D(x^k))$. Because $xax^{-1} = q(a) \neq a$ where $q(a) \in Z(a)$, we have that x and a generate a finite-dimensional division algebra D_1 over Z_1 . By Theorem 2 we must have that D_1 is commutative. However, since both x and a are in D_1 and do not commute, we have a contradiction. The theorem is now proved.

As a very special case of Theorem 3 we have

THEOREM 4. If D is a division ring in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$, $n(x,y) \ge 1$, *for all* $x \neq 0$ *,* $y \neq 0$ *in D, if a* $\in \mathbb{Z}$ then $a \in \mathbb{Z}$.

PROOF. Suppose that $a \not\in Z$; then for some $x \in D$, $u = xax^{-1}a^{-1} \neq 1$. Since $a^{2} \in Z$, $(ua)^{2} = xa^{2}x^{-1} = a^{2}$ from which we get *uau* = *a*, and so *aua*⁻¹ = u^{-1} . Since u is a commutator, $u^n \in Z$ for some $n > 0$, so u is certainly algebraic over Z. If $u^{-1} = u$ then $u^2 = 1$, and since $u \neq 1$ we have that $u = -1$. This would give us that $xax^{-1} = a \neq a$ and so $Z(a)$ admits the non-trivial automorphism, inducedby conjugation by x, over Z. By Theorem 3 this is not possible. Hence $u^{-1} \neq u$.

Since $u^{-1} = aua^{-1}$, $Z(u)$ admits the non-trivial automorphism over Z induced by conjugation by a. By Theorem 3, this is impossible.

An immediate corollary to this last theorem is the

COROLLARY 1. If D is a division ring in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$ for all $x \neq 0$, $y \neq 0$ *in D then* $(xyx^{-1}y^{-1})^{m(x,y)} \in Z$ where $m(x, y)$ *is odd.*

From this corollary we read off trivially the special result by Putcha and Yaqub cited earlier [6].

COROLLARY 2. If D is a division ring in which $(xyx^{-1}y^{-1})^{2^{n(x,y)}} \in Z$ for all $x \neq 0$, $y \neq 0$ *in D, then D is commutative.*

We can drop the algebraic condition on a in Theorem 3, by restating the result in a somewhat different form.

THEOREM 5. Let D be a division ring in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$ for all *non-zero x and y in D, with n(x, y)* \geq 1. If a, $b \in D$ are such that bab⁻¹ $\in C_D(a)$ *then* $ab = ba$ *.*

PROOF. Suppose that $ab \neq ba$. If $u = bab^{-1}a^{-1}$ then, if $u = \lambda \neq 1 \in \mathbb{Z}$, we would have that $bab^{-1} \in Z(a)$, and so $bZ(a)b^{-1} \subset Z(a)$. If $v =$ $b(a + 1)b^{-1}(a + 1)^{-1} = (\lambda a + 1)/(a + 1)$, since v is a commutator, $v^m \in Z$ for some $m \ge 1$. Hence $[(\lambda a + 1)/(a + 1)]^m = \beta \in \mathbb{Z}$. If $\beta \neq \lambda^m$, this last relation would force a to be algebraic over Z. This, together with $bZ(a)b^{-1} \subset Z(a)$ would yield, by applying Theorem 3, that *ba = ab.* Hence we must assume that $\beta = \lambda^m$, and so $[(\lambda a + 1)/(a + 1)]^m = \lambda^m$. In other words $[(\lambda a + 1)/\lambda (a + 1)]^m =$ 1. Let $c = (\lambda a + 1)/\lambda (a + 1)$; since $\lambda \neq 1$ and $a \in \mathbb{Z}$ we immediately know that $c \in \mathbb{Z}$. But $c^m = 1$, $c \notin \mathbb{Z}$, hence $\mathbb{Z}(c)$ admits a non-trivial automorphism over \mathbb{Z} . By Theorem 3 this is not possible. So we conclude that $u = bab^{-1}a^{-1}$ is *not* in Z.

Since u is a commutator, $u^n = \gamma \in Z$ for some $n > 1$. Because $bab^{-1} \in C_D(a)$ by hypothesis, $\gamma = u^n = (bab^{-1}a^{-1})^n = (bab^{-1})^n a^{-n} = ba^n b^{-1}a^{-n}$. By the reasoning of the paragraph above we must have $\gamma = 1$ and so $u'' = \gamma = 1$. Since $u \notin Z$ is a root of unity, $Z(u)$ admits a non-trivial automorphism over Z. By Theorem 3 this is not possible. In consequence, $ab = ba$ and so the theorem is proved.

We now pass to a local version of Theorem 4. This is

THEOREM 6. Let D be a division ring, and let $a \in D$ be such that $(axa^{-1}x^{-1})^{n(x)} \in Z$, $n(x) \ge 1$, *for all* $x \ne 0$ *in D. If* $a^2 \in Z$ *then* $a \in Z$ *.*

PROOF. Suppose that $a \notin Z$. From the Brauer-Cartan-Hua theorem we immediately have that $u = \alpha x a^{-1} x^{-1} \notin \mathbb{Z}$ for some $x \in D$. As in the proof of Theorem 4 we obtain that $ua^{-1}u = a^{-1}$, and so $aua^{-1} = u^{-1} \neq u$.

Consider $Z(u)$; a induces an automorphism of period 2 on $Z(u)$ by conjugation. Hence the fixed field F of this automorphism is of co-dimension 2 in $Z(u)$. Therefore $Z(u) = \{ \alpha + \beta u \mid \alpha, \beta \in F \}.$

If $\alpha, \beta \in F$ they commute with a, whence $y = a(\alpha + \beta u)a^{-1}(\alpha + \beta u)^{-1} =$ $(\alpha + \beta u^{-1})/(\alpha + \beta u) = \gamma(\alpha + \beta u)^{-2}$, where $\gamma = (\alpha + \beta u^{-1})(\alpha + \beta u)$ is in Z. Since y is a commutator of a, $y'' \in Z \in F$ for some $n \ge 1$, hence $(\alpha + \beta u)^{2^n} \in F$ for all $\alpha, \beta \in F$. If $t \in Z(u)$, $t = \alpha + \beta u$ for some $\alpha, \beta \in F$, thus $t^{m(t)} \in F \neq Z(u)$ for some $m(t) \ge 1$. By a result of Kaplansky [5], F is of characteristic p different from 0, and either *Z(u)* is purely inseparable over F of *Z(u)* is algebraic over the prime field having p elements.

Now $u^2 - \lambda u + 1 = 0$ where $\lambda = u + u^{-1} \in F$. So, if char $F \neq 2$, u is separable over F. If char $F = 2$, then u is inseparable over F only if $\lambda = 0$, and so, only if $u^2 = 1$. But this would force $u = 1$, contrary to $u \neq 1$. Hence $Z(u)$, and so Z, must be algebraic over the prime field. Since $a^2 \in \mathbb{Z}$, a^2 is algebraic over $GF(p)$ and so $a^m = 1$ for some $m \ge 1$. Because $u \in Z(u)$, u is algebraic over $GF(p)$, hence $u'' = 1$ for some $n \ge 1$. These two relations on u and a together with $aua^{-1} = u^{-1}$ give us that a and u generate a finite division ring. By Wedderburn's theorem we conclude that $au = ua$, contrary to $au \neq ua$. The theorem is thereby proved.

At this point it seems appropriate to make two conjectures which touch on the things we have been discussing. The first is a local version of Theorem 1; the second is a local version of the general result we seek here. Of course the truth of the second conjecture would imply that of the first one.

CONJECTURE 1. Let D be a division ring, $a \in D$ such that $(axa^{-1}x^{-1})^{n(x)} = 1$ *for all* $x \neq 0 \in D$ *. Then* $a \in Z$ *.*

CONJECTURE 2. Let D be a division ring, $a \in D$ such that $(axa^{-1}x^{-1})^{n(x)} \in Z$ *for all* $x \neq 0 \in D$ *. Then a* $\in \mathbb{Z}$ *.*

We continue studying division rings in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$. We prove

LEMMA 1. Let D be a division ring in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$ for all $x \neq 0$, $y \neq 0$ in D. Then D contains no elements purely inseparable over Z.

PROOF. Suppose that char $D = p \neq 0$ and $a \not\in Z$ but $a^p \in Z$. We follow a familiar route. Let $[u, v] = uv - vu$ and $[u_1, u_2, \dots, u_n] = [[u_1, \dots, u_{n-1}], u_n]$. Thus for any $x \in D$,

$$
[x, a, a, \cdots, a] = 0.
$$

So there exists a $y \in D$ with $ay - ya \neq 0 \in C_D(a)$. As usual this gives an element $b \in D$ such that $ab - ba = a$, and so $aba^{-1} = 1 + b$. Thus $aba^{-1}b^{-1} = 1 + b^{-1}$, and since $(aba^{-1}b^{-1})^k \in Z$ we have $(1 + b^{-1})^k \in Z$. Therefore b is algebraic over Z. So, since $aba^{-1} = 1 + b$, $Z(b)$ admits a non-trivial automorphism over Z. By Theorem 3, this situation is not possible, whereby the Iemma is proved.

With the lemma in hand we can prove

THEOREM 7. Let D be a division ring in which $(xyx^{-1}y^{-1})^{n(x,y)} \in Z$ for all $x \neq 0$, $y \neq 0$ in D. Then any element in D which is algebraic over Z is separable *over Z.*

PROOF. Suppose that $a \in D$, $a \notin Z$ is inseparable over Z. Therefore a^{p^n} is separable over Z for some *n*, where $p = \text{char } D \neq 0$. By Lemma 1, $a^{p^n} \notin Z$. Consider $C_D(a^{p^n})$. In it, a is purely inseparable over $Z(C_D(a^{p^n}))$, so, by Lemma 1, we have that $C_D(a^{p^n})$ is commutative, unless $a \in Z(C_D(a^{p^n}))$. But if $a \in Z(C_p(a^{p^n})) = Z(a^{p^n})$ (by the double centralizer theorem) then a is separable over Z since $Z(a^{p^n})$ is a separable extension of Z. On the other hand, if $C_D(a^{p^n})$ is commutative, it is a maximal subfield of D and, by the double centralizer theorem, $C_D(a^{p^n}) = Z(a^{p^n})$. Since $a \in C_D(a^{p^n}) = Z(a^{p^n})$, as above we conclude that a is separable over Z . At any rate, in all cases a turns out to be separable over Z, which is precisely the contention of the theorem.

We turn to a question which is a bit off the direction we have followed until now, but is closely related in spirit to the results we have established. The next theorem extends a result of Zalesskii [9], who proved it for periodic normal subgroups of D.

THEOREM 8. *Let D be a division ring and let N be a subnormal subgroup of the multiplicative group of D. If N is periodic then* $N \subset Z$ *.*

PROOF. It is enough to show that N is commutative, for if K is the subdivision ring of D generated by N over Z then $aKa^{-1} \subset K$ for all $a \in N$. If $N \not\subset Z$, then by a result of Stuth [8] either $K \subset Z$ or $K = D$. If N is commutative, then K is a field so we obtain, from the above, that $K \subset Z$. Since $N \subset K$ we derive that $N \subset \mathbb{Z}$. So, to prove the theorem, we must merely show that N is commutative.

We first dispose of the case $\dim_z D < \infty$. In that case N is isomorphic to a torsion group of matrices, so by the affirmative answer to the Burnside Problem in this case N must be locally finite. If Char $D = p \neq 0$ it then follows from a result of Herstein $[2]$ that N is abelian, so by the argument of the first paragraph, $N \subset Z$. Hence we may assume that Char $D = 0$.

Suppose that N is not commutative, and that $a, b \in N$ are such that $ab \neq ba$. Consider N_0 , the group generated by a and b. By the local finiteness of N, N_0 is a finite group. So $D_1 = QN_0$, the span of N_0 over the rational field Q, is a division algebra finite-dimensional over Q. Also, $M = D_1 \cap N \supset N_0$ is a subnormal subgroup of D_1 , and is clearly a torsion group. If M is abelian, because $a, b \in N_0 \subset M$ we have the contradiction $ab = ba$.

So we may assume that D is finite-dimensional over O , and that N is a non-commutative, periodic subnormal subgroup of D. As a torsion group of matrices over Q, by a theorem of Schur [7], N has an abelian normal subgroup \overline{A} of finite index in N. The subdivision ring generated by A is a field K such that $nKn^{-1} \subset K$ for all $n \in N$. Since $N \nsubseteq Z$, by the previously-quoted result of Stuth, we have that $A \subset Z$.

Now Z is a finite extension of Q , so has only a finite number of roots of unity. Yet every $a \in A$ is such a root of unity. The net result of this is that A is a finite group. Since A is of finite index in N , we conclude that N is a finite group.

If N is normal in D , then every element of N has all its conjugates in N , therefore has only a finite number of conjugates. By a theorem of Herstein [3] we get that $N \subset Z$. So we may assume that N is not normal in D.

Since N is subnormal in D, $N \triangleleft N_1 \triangleleft N_2 \triangleleft \cdots N_k \triangleleft D$. If $t \in N_1$ then t induces an automorphism on the finite group N by conjugation. Thus we have that $t' \in C_D(N)$, where $r = (o(N))!$. However, since $N \not\subset Z$ and $xC_D(N)x^{-1} \subset Z$ $C_D(N)$ for all $x \in N$, by Stuth's theorem we have that $C_D(N) = Z$ or $C_D(N) =$ D. The latter possibility implies that $N \subset Z$. Therefore $C_D(N) \subset Z$. Since $t' \in C_D(N)$, we have that $t' \in Z$.

Let B be the commutator subgroup of N₁. If $b \in B$, by the above, $b' = \beta \in Z$. By the Sublemma we therefore have that β is a root of unity. Thus $b^m = 1$ for $b \in B$. Since $B \triangleleft N_2 \triangleleft \cdots N_k \triangleleft D$, using an induction on the length of subnormality (we already have the result, above, for normal subgroups) we get that $B \subset \mathbb{Z}$. So, if $a, b \in N \subset N_1$, then $aba^{-1}b^{-1} = \alpha \in \mathbb{Z}$ and so $aba^{-1} \in \mathbb{Z}(b)$ for every $a \in N$. Thus $aZ(b)a^{-1} \subset Z(b)$ for every $a \in N$; since $N \not\subset Z$, by the theorem of Stuth we conclude that $Z(b) = Z$ and so $b \in Z$. Thus $N \subset Z$, and the result is proved if $\dim_{\mathbb{Z}} D < \infty$.

Suppose, then, that $\dim_z D = \infty$, and that N is a subnormal periodic subgroup of D. Suppose that $N \not\subset Z$, and let $a \in N$, $a \not\in Z$. Since $a^* = 1$ for some $k > 1$, the field $Z(a)$ admits an automorphism $\phi \neq 1$ over Z, and $\phi(a) = a^i \neq a$. By the Skolem-Noether theorem there is an $x \in D$ such that $xax^{-1} = \phi(a) = a^i$. Since $Z(a)$ is finite-dimensional over Z, $\phi' = 1$ and so $x'a = ax'$ for some $t \ge 1$. Let D_0 be the subdivision ring generated by x and a over Z. From the fact that x^i commutes with both x and a we have that $x' \in Z_0 = Z(D_0)$. Because $a^* = 1$ and $xax^{-1} = a^i$, we then have that D_0 is finite-dimensional over Z_0 . Since $N_0 =$ $N \cap D_0$ is a periodic subnormal sugroup of D_0 , which is finite-dimensional over its center Z_0 , the result we have established above in the finite-dimensional case tells us that $N_0 \subset Z_0$. However, $a \in N_0$ and $a \notin Z_0$ since $x \in D_0$ and $ax \neq xa$. With this contradiction the theorem is proved.

It seems reasonable that the generalization of Theorem 8 from torsion groups to groups which are torsion with respect to Z might be true. This is

CONJECTURE 3. *Let D be a division ring and let N be a subnormal subgroup of D.* If $a^{n(a)} \in Z$ for every $a \in N$, where $n(a) > 0$, then $N \subset Z$.

We finish this paper with a result which gives some information in the direction of verifying Conjecture 3.

THEOREM 9. *Let D be a division ring and N a subnormal subgroup of D such that* $a^{n(a)} \in Z$ for all $a \in N$, where $n(a) > 0$. Then every element in N of finite *period must be in Z.*

PROOF. Suppose that $a \in N$, $a \notin Z$ is such that $a^m = 1$ for $m > 0$. By the Skolem-Noether theorem there exists an $x \in D$ such that $xax^{-1} = a^i \neq a$. Thus $x'a = ax'$ for some $t > 0$. Therefore the subdivision ring D_1 generated by a and x over Z is finite-dimensional over $Z_1 = Z(D_1)$. If $N_1 = N \cap D_1$, then N_1 is subnormal in D_1 and $b^{n(b)} \in Z_1$ for all $b \in N_1$.

Let B be the commutator subgroup of N₁. If $b \in B$ then $b^{n(b)} = \beta \in Z_1$; by the Sublemma, β is a root of unity. Hence $b^{m(n)} = 1$ for $m(b) > 0$. So B is a periodic subnormal subgroup of D_1 . By Theorem 8, $B \subset Z_1$. So, if $u, v \in N_1$ then $uvu^{-1}v^{-1} \in B \subset Z_1$, hence $uvu^{-1} = \lambda v$ where $\lambda \in Z_1$. Thus $u \in Z(v)u^{-1} \subset Z(v)$ for all $u \in N_1$. Since $a \in N_1$ and $a \notin Z_1$, $N_1 \notin Z_1$. Therefore, by Stuth's theorem, $Z(v) = Z$ for all $v \in N_1$, and so $N_1 \subset Z_1$. This contradicts $N_1 \not\subset Z_1$, and proves the theorem.

If D is a division ring of characteristic $p \neq 0$ and N is a subnormal subgroup of D such that $x^{n(x)} \in Z$ for every $x \in N$, using the argument of Lemma 1 in conjunction with Theorem 8 it is easy to show that every element $a \in N$ such that $a^{p^{n(a)}} \in Z$ must be in Z. In particular if N is such that $x^{p^{n(x)}} \in Z$ for all $x \in N$ then N is in the center.

Added in Proof. It has come to my attention that Monastyrni (Math. Rev. 51, 5782) has proved a slight generalization of my Theorem 8, and deserves priority on this result of Theorem 8.

REFERENCES

I. S. A. Amitsur, *Rational identities and applications to algebra and geometry,* J. Algebra 3 (1966), 304-359.

2. I. N. Herstein, *Finite multiplicative subgroups in division rings,* Pacific J. Math. 3 (1953), 121-126.

3. I. N. Herstein, *Conjugates in divsion rings,* Proc. Amer. Math. Soc. 7 (1956), 1021-1022.

4. I. N. Herstein, Claudio Procesi and Murray Schacher, *Algebraic valued functions on noncommutative rings,* J. Algebra 36 (1975), 128-150.

5. Irving Kaplansky, *A theorem on division rings,* Canad. J. Math. 3 (1951), 290-292.

6. M. S. Putcha and A. Yaqub, *Multiplicative commutators in division rings,* Math. Japon. 9 (1974), 111-115.

7. I. Schur, *Uber Gruppen periodischer Substitutionen*, S. B. Preuss Akod. Wiss. (1911), 619-627.

8. C. Stuth, *A generalization of the Brauer-Cartan-Hua theorem*, Proc. Amer. Math. Soc. 15 (1964), 211-217.

9. A. E. Zalesskii, *Solvable groups and crossed products,* Mat. Sb. 67 (109) (1965), no. 1,154-160.

UNIVERSITY OF CHICAGO CHICAGO, ILL. 60637 USA